22,870 research outputs found

    Spontaneous Breaking of Flavor Symmetry and Parity in the Nambu-Jona-Lasinio Model with Wilson Fermions

    Full text link
    We study the lattice \njl~model with two flavors of Wilson fermions in the large NN limit, where NN is the number of `colors'. For large values of the four-fermion coupling we find a phase in which both, flavor symmetry and parity, are spontaneously broken. In accordance with general expectations there are three massless pions on the phase boundary, but only two of them remain massless inside the broken phase. This is analogous to earlier results obtained in lattice QCD, indicating that this behavior is a very general feature of the Wilson term.Comment: 7 pages, 4 figures, LATEX, tared and uuencode

    Chiral perturbation theory with Wilson-type fermions including a2a^2 effects: Nf=2N_f=2 degenerate case

    Full text link
    We have derived the quark mass dependence of mπ2m_{\pi}^2, mAWIm_{\rm AWI} and fπf_{\pi}, using the chiral perturbation theory which includes the a2a^2 effect associated with the explicit chiral symmetry breaking of the Wilson-type fermions, in the case of the Nf=2N_f=2 degenerate quarks. Distinct features of the results are (1) the additive renormalization for the mass parameter mqm_q in the Lagrangian, (2) O(a)O(a) corrections to the chiral log (mqlogmqm_q\log m_q) term, (3) the existence of more singular term, logmq\log m_q, generated by a2a^2 contributions, and (4) the existence of both mqlogmqm_q\log m_q and logmq\log m_q terms in the quark mass from the axial Ward-Takahashi identity, mAWIm_{\rm AWI}. By fitting the mass dependence of mπ2m_\pi^2 and mAWIm_{\rm AWI}, obtained by the CP-PACS collaboration for Nf=2N_f=2 full QCD simulations, we have found that the data are consistently described by the derived formulae. Resumming the most singular terms logmq\log m_q, we have also derived the modified formulae, which show a better control over the next-to-leading order correction.Comment: 21 pages, 4 figures (10 eps files), Revtex4, some discussions and references added, the final version to appear in PR

    Two-dimensional Lattice Gross-Neveu Model with Wilson Fermion Action at Finite Temperature and Chemical Potential

    Get PDF
    We investigate the phase structure of the two-dimensional lattice Gross-Neveu model formulated with the Wilson fermion action to leading order of 1/N expansion. Structural change of the parity-broken phase under the influence of finite temperature and chemical potential is studied. The connection between the lattice phase structure and the chiral phase transition of the continuum theory is clarified.Comment: 42 pages, 20 EPS figures, using REVTe

    Spontaneous Flavor and Parity Breaking with Wilson Fermions

    Get PDF
    We discuss the phase diagram of Wilson fermions in the m0m_0--g2g^2 plane for two-flavor QCD. We argue that, as originally suggested by Aoki, there is a phase in which flavor and parity are spontaneously broken. Recent numerical results on the spectrum of the overlap Hamiltonian have been interpreted as evidence against Aoki's conjecture. We show that they are in fact consistent with the presence of a flavor-parity broken ``Aoki phase''. We also show how, as the continuum limit is approached, one can study the lattice theory using the continuum chiral Lagrangian supplemented by additional terms proportional to powers of the lattice spacing. We find that there are two possible phase structures at non-zero lattice spacing: (1) there is an Aoki phase of width Δm0a3\Delta m_0 \sim a^3 with two massless Goldstone pions; (2) there is no symmetry breaking, and all three pions have an equal non-vanishing mass of order aa. Present numerical evidence suggests that the former option is realized for Wilson fermions. Our analysis then predicts the form of the pion masses and the flavor-parity breaking condensate within the Aoki phase. Our analysis also applies for non-perturbatively improved Wilson fermions.Comment: 22 pages, LaTeX, 5 figures (added several references and a comment

    Structure of Critical Lines in Quenched Lattice QCD with the Wilson Quark Action

    Get PDF
    The structure of critical lines of vanishing pion mass for the Wilson quark action is examined in quenched lattice QCD. The numerical evidence is presented that critical lines spread into five branches beyond beta=5.6-5.7 at zero temperature. It is also shown that critical lines disappear in the deconfined phase for the case of finite temperatures.Comment: 11 pages, Latex, 7 Postscript figures, uses epsf.st

    Baryon-Baryon Interactions from Lattice QCD

    Full text link
    We report on new attempt to investigate baryon-baryon interactions in lattice QCD. From the Bethe-Salpeter (BS) wave function, we have successfully extracted the nucleon-nucleon (NNNN) potentials in quenched QCD simulations, which reproduce qualitative features of modern NNNN potentials. The method has been extended to obtain the tensor potential as well as the central potential and also applied to the hyperon-nucleon (YNYN) interactions, in both quenched and full QCD.Comment: 6 pages, 10 figures, A plenary talk given at the 5-th International Conference on Quark and Nuclear Physics, Beijing, September 21-26, 200

    Nucleon-nucleon interactions via Lattice QCD: Methodology --HAL QCD approach to extract hadronic interactions in lattice QCD--

    Full text link
    We review the potential method in lattice QCD, which has recently been proposed to extract nucleon-nucleon interactions via numerical simulations. We focus on the methodology of this approach by emphasizing the strategy of the potential method, the theoretical foundation behind it, and special numerical techniques. We compare the potential method with the standard finite volume method in lattice QCD, in order to make pros and cons of the approach clear. We also present several numerical results for the nucleon-nucleon potentials.Comment: 12 pages, 10 figure

    Operator product expansion and the short distance behavior of 3-flavor baryon potentials

    Get PDF
    The short distance behavior of baryon-baryon potentials defined through Nambu-Bethe-Salpeter wave functions is investigated using the operator product expansion. In a previous analysis of the nucleon-nucleon case, corresponding to the SU(3) channels 27s27_s and 10a\overline{10}_a, we argued that the potentials have a repulsive core. A new feature occurs for the case of baryons made up of three flavors: manifestly asymptotically attractive potentials appear in the singlet and octet channels. Attraction in the singlet channel was first indicated by quark model considerations, and recently been found in numerical lattice simulations. The latter have however not yet revealed asymptotic attraction in the octet channels; we give a speculative explanation for this apparent discrepancy.Comment: 11 pages, 2 figure

    Finite-Temperature Phase Structure of Lattice QCD with the Wilson Quark Action for Two and Four Flavors

    Get PDF
    We present further analyses of the finite-temperature phase structure of lattice QCD with the Wilson quark action based on spontaneous breakdown of parity-flavor symmetry. Results are reported on (i) an explicit demonstration of spontaneous breakdown of parity-flavor symmetry beyond the critical line, (ii) phase structure and order of chiral transition for the case of Nf=4N_f=4 flavors, and (iii) approach toward the continuum limit.Comment: Poster presented at LATTICE96(finite temperature); 4 pages, Latex, uses espcrc2 and epsf, seven ps figures include
    corecore